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Abstract

In the present paper we propose a set of orthotropic and transversely isotropic strain energy functions that (a) are

polyconvex, (b) are proved to be coercive and (c) satisfy a priori the condition of the stress-free natural state. These

conditions ensure the existence of the global minimizer of the total elastic energy and for this reason are very important

in the context of a boundary value problem. The proposed hyperelastic model is represented by a power series with an

arbitrary number of terms and corresponding material constants which can easily be evaluated from experimental data.

For illustration, the model is fitted to uniaxial tension tests of calendered rubber sheets revealing transverse isotropy

with respect to the calendering direction. Thus, a very good agreement with the experimental results is achieved.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A solution of any boundary value problem in nonlinear elasticity depends on the crucial question

whether or not there exists a deformation which minimizes in the local or global sense the total elastic
energy of the body. This question can be answered positively if the strain energy function of the body (1) is

quasiconvex and (2) satisfies some continuity and growth requirements the last one being referred to as

coercivity. Indeed, Morrey (1952) (see also Acerbi and Fusco, 1984; Ball and Murat, 1984) showed that

these conditions are sufficient for the existence of the global minimizer of the elastic energy. Thereby, the

quasiconvexity condition introduced by Morrey ensures that the strain energy function satisfies the

Legendre–Hadamard or ellipticity condition. It implies that the acoustic tensor is positive definite such that

the speed of displacement waves is always real for any direction of propagation. However, the quasicon-

vexity condition represents an integral inequality and is very difficult to verify. Instead, a stronger condition
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of polyconvexity has been introduced by Ball (1977). It appears to be easier to handle at least for isotropic

materials. Indeed, a great variety of realistic models of nonlinear isotropic materials as for example Ogden,

Mooney-Rivlin and neo-Hookean one can be shown to satisfy this condition (Ball, 1977; Ciarlet, 1988).

Further, some polyconvex isotropic strain energy functions based on the volumetric-isochoric split have
been proposed by Dacorogna (1989) and recently by Hartmann and Neff (2003). On the other hand, St.

Venant-Kirchhoff isotropic models based on generalized strain measures are proved to be non-polyconvex

(Raoult, 1986; Ciarlet, 1988; Bruhns et al., 2001; B€ohlke and Bertram, 2002).

The verification of the polyconvexity condition for many useful anisotropic strain energy functions

appears to be a more complicated task. Instead, one can formulate new strain energy functions that are a

priori polyconvex. Thus, some polyconvex transversely isotropic and orthotropic energy ansatzes have

recently been proposed by Schr€oder and Neff (2003). However, these ansatzes generally do not satisfy the

condition of the stress-free natural state. Thus, a linear combination of these polyconvex terms is required
where the coefficients are subjected to an additional constraint. Besides, the question about the coercivity of

the proposed anisotropic strain energy functions remains open. Recall, that together with the polyconvexity

and continuity the coercivity condition ensures the existence of the global minimizer of the total elastic

energy.

Based on the results by Schr€oder and Neff (2003) we propose in the present paper a set of orthotropic

and transversely isotropic strain energy functions that (a) are polyconvex, (b) are proved to be coercive and

(c) satisfy a priori the condition of the stress-free natural state. These strain energy functions are repre-

sented by a power series with an arbitrary number of terms and corresponding material constants which can
easily be evaluated from experimental data. For illustration we match our hyperelastic model to uniaxial

tension tests of calendered rubber sheets revealing transverse isotropy with respect to the calendering

direction (Diani et al., 2003). Thus, a very good agreement with the experimental results is obtained.

The paper is organized as follows. We begin with some underlying mathematical notations and defi-

nitions (Section 2). Then, basic facts about hyperelasticity (Section 3), orthotropic and transversely iso-

tropic material symmetries (Section 4) are recalled. For a given material symmetry the St. Venant-Kirchhoff

model represents the simplest hyperelastic formulation and attracts for this reason particular attention. For

orthotropic materials it is formulated in Section 5. In Section 6 we recall some known polyconvex aniso-
tropic energy ansatzes which are used in Section 7 to construct a set of orthotropic and transversely iso-

tropic strain energy functions a priori satisfying the condition of the stress-free natural state. These

functions are proved to fulfill also the coercivity requirement which we focus on in Section 8. Of particular

interest is the special case of incompressible materials considered in Section 9. Finally, our model is very

accurately fitted to experimental results on calendered rubber sheets (Section 10).
2. Mathematical preliminaries and notations

Let Lin be a set of all linear mappings of a three-dimensional vector space R3 over reals into itself. The

elements of Lin are called second-order tensors. Through the standard operations of sum, multiplication

with a scalar and finally the scalar product Lin represents a finite-dimensional vector space with the inner

product. Symmetric, orthogonal and invertible second-order tensors constitute subsets of Lin defined as

follows: Sym ¼ fA 2 Lin : A ¼ ATg, Orth ¼ fQ 2 Lin : Q ¼ Q�Tg, Inv ¼ fA 2 Lin : detA 6¼ 0g, where
detA denotes the determinant of the second-order tensor A. Further, we use the following abbreviations

cof A ¼ A�TdetA and adjA ¼ A�1detA ¼ ðcof AÞT, where cof A is referred to as cofactor of the tensor

A 2 Inv.

Fourth-order tensors in turn form a set Lin of all linear mappings of Lin into itself such that
B ¼ D : A; B 2 Lin; 8A 2 Lin; 8D 2 Lin: ð1Þ
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They can be constructed from second-order tensors by means of the tensor products ‘‘·’’ and ‘‘
’’ defined
by
ðA� BÞ : C ¼ ðB : CÞA; A
 B : C ¼ ACB; 8A;B;C 2 Lin: ð2Þ

The composition of second-order tensors has priority with respect to the tensor products such that

AB� CD ¼ ðABÞ � ðCDÞ and AB
 CD ¼ ðABÞ 
 ðCDÞ. Further, introducing a simple contraction of a

fourth-order tensor with second-order ones by
ðADBÞ : C ¼ AðD : CÞB; 8D 2 Lin; 8A;B;C 2 Lin; ð3Þ
one can formulate the following product rules of differentiation (Itskov, 2002)
ðfAÞ;C ¼ A� f;C þ fA;C; ðABÞ;C ¼ A;CBþ AB;C; 8A;B;C 2 Lin; ð4Þ
where f , A and B represent a scalar- and two tensor-valued differentiable tensor functions, respectively.

For the functions of several arguments A1;A2; . . . ;An the following abbreviated notation will be used:

f ¼ f̂ ðAiÞði ¼ 1; 2; . . . ; nÞ.
3. Hyperelastic materials

In the following we will deal with the so-called hyperelastic materials. An elastic material is said to be

hyperelastic if its free energy per unit volume of the reference configuration can be represented as a function

of the deformation gradient F by
W ¼ WF ðFÞ: ð5Þ

According to the material objectivity condition
WF ðQFÞ ¼ WF ðFÞ; 8Q 2 Orth: ð6Þ

Thus, the strain energy function can be given in terms of the right Cauchy–Green tensor C ¼ FTF by
W ¼ WCðCÞ: ð7Þ

A constitutive law can then be written for an unconstrained hyperelastic material by (see e.g. Truesdell and

Noll, 1965)
S ¼ 2
oW
oC

; ð8Þ
where S represents the second Piola–Kirchhoff stress tensor. The material time derivative of (8) (denoted by

a superposed dot) further yields
_S ¼ C :
1

2
_C; ð9Þ
where
C ¼ 2
oS

oC
¼ 4

o2W
oCoC

ð10Þ
stands for the so-called tangent (elasticity) tensor of the fourth-order.

For constrained materials the constitutive law is written by
S ¼ 2
oW
oC

þ q
oc
oC

; ð11Þ
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where q is an arbitrary scalar and c represents the so-called constraint function defining by
cðCÞ ¼ 0 ð12Þ

the constraint manifold. The stress rate takes in this case the following form (see e.g. Ogden, 1984)
_S ¼ C :
1

2
_Cþ _q

oc
oC

; ð13Þ
where
C ¼ 4
o2W
oCoC

þ 2q
o2c

oCoC
: ð14Þ
4. Orthotropic and transversely isotropic material symmetry

A material is said to be orthotropic if it is characterized by symmetry with respect to three mutually

orthogonal planes, by reflections from which material properties remain unchanged. The axes normal to

these planes are called principal material directions. The set of all orthogonal mappings that do not violate

the material symmetry forms a group referred to as symmetry group. Let l i 
 lj ¼ dij ði; j ¼ 1; 2; 3Þ be unit
base vectors in the principal material directions. Then, the orthotropic symmetry group can be described by
means of the so-called structural tensors defined by
Li ¼ l i 
 l i; i ¼ 1; 2; 3: ð15Þ

Transverse isotropy represents a material symmetry with respect to only one selected (principal material)

direction. It is characterized by invariance of material properties with respect to rotations about, and

reflections from the planes orthogonal or parallel to this direction. The structural tensors can be expressed

in this case by
L1 ¼ l1 
 l1; L2 ¼ L3 ¼
1

2
ðI� l1 
 l1Þ; ð16Þ
where I represents the second-order identity tensor and the principal material direction is denoted by the

index 1.

With the aid of the structural tensors (15) and (16) the symmetry group can uniquely be defined by
g ¼ fQ 2 Orth : QLiQ
T ¼ Li; i ¼ 1; 2; . . . ; ng; ð17Þ
where n takes the value of 3 for the orthotropic and of 2 for the transversely isotropic symmetry.

The structural tensors (15) and (16) are characterized by the following important properties
X3
i

Li ¼ I; LiLj ¼ 0; trLi ¼ 1; i 6¼ j; i; j ¼ 1; 2; . . . ; n: ð18Þ
For hyperelastic materials the condition of material symmetry is written in terms of the strain energy

function (7) and the symmetry group (17) by
WCðQCQTÞ ¼ WCðCÞ; 8Q 2 g: ð19Þ

According to the Rychlewski’s theorem (see e.g. Zhang and Rychlewski, 1990) this condition is satisfied if

and only if the strain energy can be represented by an isotropic tensor function of arguments the list of

which additionally includes the structural tensors
W ¼ WCLðC;LiÞ; WCLðQCQT;QLiQ
TÞ ¼ WCLðC;LiÞ; i ¼ 1; 2; . . . ; n; 8Q 2 Orth: ð20Þ
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Indeed, in this case (see also Boehler, 1979; Liu, 1982)
WCLðQCQT;LiÞ ¼ WCLðQCQT;QLiQ
TÞ ¼ WCLðC;LiÞ; i ¼ 1; 2; . . . ; n; 8Q 2 g: ð21Þ
In turn, the isotropic tensor function (20) can be constructed with the aid of the classical invariant theory

(see e.g. Smith, 1971). Accordingly, one can write under consideration of (18)
W ¼ W
_

ðtrðCLiÞ; trðC2LiÞ; trC3Þ; i ¼ 1; 2; . . . ; n: ð22Þ
5. St. Venant-Kirchhoff material

For a given material symmetry the St. Venant-Kirchhoff model represents the simplest hyperelastic
formulation and attracts for this reason particular attention. In order to formulate the St. Venant-Kirchhoff

model for the orthotropic material symmetry ðn ¼ 3Þ we again focus on the representation of the strain

energy function (22). First, we rewrite it in terms of the Green–Lagrange strain tensor E ¼ 1=2ðC� IÞ by:
W ¼ W
^

ðtrðELiÞ; trðE2LiÞ; trE3Þ; i ¼ 1; 2; 3: ð23Þ

By virtue of (15) and (18) we can further obtain the following identities
trðE2LiÞ ¼ trðELiELiÞ þ trðELjELiÞ þ trðELkELiÞ; i 6¼ j 6¼ k 6¼ i ¼ 1; 2; 3; ð24Þ

trðELiELiÞ ¼ tr2ðELiÞ; i ¼ 1; 2; 3: ð25Þ
Thus, one can write
W ¼ W
^
^

ðtrðELiÞ; trðELiELjÞ; trE3Þ; i; j ¼ 1; 2; 3; j > i: ð26Þ

The invariants trðELiÞ and trðELiELjÞ are advantageous as arguments of the strain energy function since

they have a clear geometrical interpretation. Indeed, 2trðELiÞ represents the change of the length square in
the principal material direction iði ¼ 1; 2; 3Þ while trðELiELjÞ describes the angle change in the principal

material plane ijði 6¼ jÞ, that is orthogonal to the principal material direction kðj 6¼ k 6¼ iÞ.
Now, we consider a power series expansion of the strain energy function (26) with respect to E:
W ¼ W ð0Þ þ W ð1Þ þ W ð2Þ þOðkEk3Þ: ð27Þ
The zeroth W ð0Þ and first-order term W ð1Þ should identically vanish in order to satisfy the requirements of

the natural state:
W jE¼0 ¼ 0; SjE¼0 ¼
oW
oE

����
E¼0

¼ 0: ð28Þ
Hence, we can write
W ¼ W ð2ÞðEÞ þOðkEk3Þ; ð29Þ

where the quadratic form (see e.g. Itskov, 2001)
W ð2ÞðEÞ ¼ 1

2

X3
i;j

aijtrðELiÞtrðELjÞ þ
X3
i;j 6¼i

GijtrðELiELjÞ ð30Þ



3838 M. Itskov, N. Aksel / International Journal of Solids and Structures 41 (2004) 3833–3848
is regarded as the St. Venant-Kirchhoff model. It is given in terms of the so-called engineering elastic

constants
Eiði ¼ 1; 2; 3Þ : Young’s moduli;
Gij ¼ Gji ði 6¼ j ¼ 1; 2; 3Þ : Lam�e’s shear moduli;

mij ¼ mji
Ej

Ei
ði 6¼ j ¼ 1; 2; 3Þ : Poisson’s ratios

ð31Þ
referred to the principal material directions and planes, respectively. Thereby, the material constants

aij ði; j ¼ 1; 2; 3Þ are expressed by (see e.g. Jones, 1975)
aii ¼ Ei
1� mjkmkj

D
; aij ¼ aji ¼ Ei

mij þ mkjmik
D

; i 6¼ j 6¼ k 6¼ i; i; j ¼ 1; 2; 3;

D ¼ 1� m12m21 � m23m32 � m31m13 � 2m21m32m13:
ð32Þ
For incompressible materials aij ði; j ¼ 1; 2; 3Þ take the form (see e.g. Itskov and Aksel, 2002)
aii ¼
1

3D
2

Ej

�
þ 2

Ek
� 1

Ei

�
; aij ¼

1

6D
1

Ei

�
þ 1

Ej
� 5

Ek

�
; i 6¼ j 6¼ k 6¼ i; i; j ¼ 1; 2; 3 ð33Þ
with the abbreviation
D ¼ 3

4

2

E1E2

�
þ 2

E2E3

þ 2

E3E1

� 1

E2
1

� 1

E2
2

� 1

E2
3

�
: ð34Þ
In the case of transversely isotropic material symmetry, all directions orthogonal to the principal material

one become equivalent. This can be taken into account by setting
E2 ¼ E3; m12 ¼ m13ðm21 ¼ m31Þ; G12 ¼ G31; G23 ¼
E2

2ð1þ m23Þ
: ð35Þ
Hence, for transversely isotropic incompressible materials
a11 ¼
4

9
E1; a22 ¼ a33 ¼

1

3D
2

E1

�
þ 1

E2

�
; a23 ¼

1

6D
2

E2

�
� 5

E1

�
; a12 ¼ a13 ¼ � 2

9
E1; ð36Þ
where
D ¼ 3

4E1

4

E2

�
� 1

E1

�
: ð37Þ
The constitutive relations and elastic moduli corresponding to the strain energy function (30) are of the

form
S ¼ oW ð2Þ

oE
¼
X3
i;j

aijtrðELiÞLj þ
X3
i;j 6¼i

2GijLiELj; ð38Þ

C ¼ o2W ð2Þ

oEoE
¼
X3
i;j

aijLi � Lj þ
X3
i;j 6¼i

2GijðLi 
 LjÞS; ð39Þ
where ð�ÞS denotes a symmetrization operation on fourth-order tensors defined by (Itskov, 2002)
DS : A ¼ D :
1

2
ðAþ AÞT; 8A 2 Lin; 8D 2 Lin: ð40Þ
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6. Polyconvex strain energy functions

A strain energy function WF ðFÞ : Inv ! R is said to be polyconvex (Ball, 1977) if and only if there exists a

convex function bW ðF; adjF; detFÞ : ðInv; Inv;RþÞ ! R such that
WF ðFÞ ¼ bW ðF; adjF; detFÞ: ð41Þ

Note, that F, adjF and detF describe deformations of line, surface and volume elements, respectively.

There are some powerful tools enabling to construct a great variety of polyconvex strain functions. One
of them is the additive representation (see e.g. Schr€oder and Neff, 2003)
WF ðFÞ ¼ bW1ðFÞ þ bW2ðadjFÞ þ bW3ðdetFÞ: ð42Þ

If each of bWiði ¼ 1; 2; 3Þ is convex then the strain energy function WF ðFÞ (42) is polyconvex. Thus, the
problem of the construction of polyconvex functions can be reduced to the formulation of convex ones.
Thereby, the following well-known statement is useful:

Let uðFÞ : Inv ! R be convex and non-negative. Then, the function upðFÞ is convex for pP 1.

Finally, we recall some important results (see Schr€oder and Neff, 2003 for details) concerning convexity

of functions of the right Cauchy–Green tensor C. Let D 2 Lin be an arbitrary positive-definite second-order

tensor. Then, the functions
trðCDÞ; tr½ðcof CÞD� ð43Þ

are convex with respect to F and adjF, respectively (Schr€oder and Neff, 2003, p. 415). In contrast, the

functions
trðC2DÞ; tr½ðcof CÞ2D� ð44Þ

are not convex. In the next section the above results will be used to construct orthotropic and transversely

isotropic polyconvex strain energy functions a priori satisfying the condition of the stress-free natural state

(28)2.

7. A set of orthotropic and transversely isotropic polyconvex strain energy functions

The invariants trðC2LiÞ; ði ¼ 1; 2; . . . ; nÞ and trC3 appearing in the general representation of the strain

energy function (22) are non-convex with respect to F, adjF or detF and should first be expressed in terms
of convex ones. To this end, we apply the Cayley–Hamilton theorem written for the right Cauchy–Green

tensor by
C3 � ICC
2 þ IICC� IIICI ¼ 0; ð45Þ
where the scalar coefficients
IC ¼ trC; IIC ¼ 1

2
½ðtrCÞ2 � trC2�; IIIC ¼ detC ð46Þ
represent the principal invariants of C. Multiplying (45) with C�1 we further obtain
C2 � ICCþ IICI� cof C ¼ 0: ð47Þ

Thus, one gains the following alternative representation of the strain energy function (22)
W ¼ W ðIi; Ji; IIICÞ; i ¼ 1; 2; . . . ; n; ð48Þ

in terms of the invariants
Ii ¼ trðCLiÞ; Ji ¼ tr½ðcof CÞLi�; i ¼ 1; 2; . . . ; n ð49Þ
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and IIIC convex with respect to F, adjF and detF, respectively. Note also, that in view of (18)1, (46) and (47)
X3
i

Ii ¼ IC;
X3
i

Ji ¼ trðcof CÞ ¼ IIC: ð50Þ
Due to positive semi-definiteness of the structural tensors (15) and (16)
Ii > 0; Ji > 0; i ¼ 1; 2; . . . ; n: ð51Þ

Further, we introduce the following linear combinations of the invariants (49)
eIr ¼Xn
i

wðrÞ
i Ii; eJr ¼Xn

i

wðrÞ
i Ji; r ¼ 1; 2; . . . ð52Þ
They are likewise convex and non-negative if the weight factors of the principal material directions wðrÞ
i are

non-negative:
wðrÞ
i P 0; i ¼ 1; 2; . . . ; n; r ¼ 1; 2; . . . ð53Þ
eIr and eJr (52) represent generalized invariants and can alternatively be expressed by
eIr ¼ trðCeLrÞ; eJr ¼ tr½ðcof CÞeLr�; r ¼ 1; 2; . . . ð54Þ
in terms of the generalized structural tensors defined by
eLr ¼
Xn
i

wðrÞ
i Li; r ¼ 1; 2; . . . ð55Þ
To ensure the property (18)3
treLr ¼ 1; r ¼ 1; 2; . . . ð56Þ

we further require that
Xn

i

wðrÞ
i ¼ 1; r ¼ 1; 2; . . . ð57Þ
Now, let us consider a strain energy function of the form
W ¼ 1

4

Xs
r

lr
1

ar
ðeI ar

r

�
� 1Þ þ 1

br
ðeJ br

r � 1Þ þ 1

cr
ðIII�cr

C � 1Þ
�
; ð58Þ
where lr, ar, br and crðr ¼ 1; 2; . . . ; sÞ represent material constants. In view of (42) the function (58) is

polyconvex if
lr P 0; ar P 1; br P 1; cr P � 1

2
; r ¼ 1; 2; . . . ; s: ð59Þ
It is seen that the polyconvexity domain includes zero values of crðr ¼ 1; 2; . . . ; sÞ. In this case the last term

in (58) transforms to
lim
cr!0

1

cr
ðIII�cr

C � 1Þ ¼ �lnIIIC: ð60Þ
The strain energy function (58) a priori satisfies the conditions of the energy and stress free natural state
(28). Indeed, the constitutive relations resulting from the strain energy function (58) are of the form
S ¼ 2
oW
oC

¼ 1

2

Xs
r

lr
eI ar�1
r

eLr

h
� eJ br�1

r IIICC
�1eLrC

�1 þ eJ br
r



� III

�cr
C

�
C�1

i
: ð61Þ
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For the natural state (C ¼ I) we obtain under consideration of (54) and (56)
W jC¼I ¼ 0; SjC¼I ¼ 0: ð62Þ

The further differentiation of (61) with respect to C yields the tangent moduli:
C ¼ 2
oS

oC

¼
Xs
r

lr arð



� 1ÞeI ar�2
r

eLr � eLr þ brð � 1ÞeJ br�2
r III2C C�1eLrC

�1



� C�1eLrC
�1
�

þ br
eJ br
r



þ crIII

�cr
C

�
C�1 � C�1 � br

eJ br�1
r IIIC C�1



� C�1eLrC

�1 þ C�1eLrC
�1 � C�1

�
� eJ br

r



� III

�cr
C

�
C�1�


 C�1�S þ ~Jbr�1
r IIIC C�1




 C�1eLrC

�1 þ C�1eLrC
�1 
 C�1

�S�
: ð63Þ
Any hyperelastic model has to recover all material constants specific for a given material symmetry.

Thus, expanded around the zero strain, zero stress state, the elasticity tensor (63) has to coincide with those

one of the St. Venant-Kirchhoff model (39):
CjC¼I ¼
o2W ð2Þ

oEoE
: ð64Þ
Comparing the representation
CjC¼I ¼
Xs
r

lr arð



þ br � 2ÞeLr � ~Lr þ brð þ crÞI� I� br I



� eLr þ ~Lr � I
�
þ I




 ~Lr þ ~Lr 
 I
�S�

ð65Þ

with (39) and taking into account (55) and (57) we obtain for the orthotropic material symmetry
aij ¼
Xs
r

lr arð
h

þ br � 2Þw rð Þ
i w rð Þ

j þ br 1



� w rð Þ
i � w rð Þ

j

�
þ cr þ 2dijw

rð Þ
i

i
; i; j ¼ 1; 2; 3;

2Gij ¼
Xs
r

lr w rð Þ
i



þ w rð Þ

j

�
; i 6¼ j; i; j ¼ 1; 2; 3:

ð66Þ
Of particular interest is the special case of isotropy which can be specified by setting
w rð Þ
i ¼ 1

3
i ¼ 1; 2; 3; r ¼ 1; 2; . . . ; s: ð67Þ
Thereby, the hyperelastic model (58) reduces to the generalized Mooney-Rivlin material
W ¼ 1

4

Xs
r

lr
1

ar

IC

3

� �ar�(
� 1

�
þ 1

br

IIC

3

� �br
"

� 1

#
þ 1

cr
III

�cr
Cð � 1Þ

)
: ð68Þ
8. Coercivity

The polyconvexity alone is not sufficient for the existence of the global minimizer of the total elastic

energy of the body. In addition, the strain energy function should satisfy a growth condition referred to as

coercivity (see Ball, 1977; Ciarlet, 1988). The coercivity condition can be formulated as follows. There exist

some c0 > 0, pP 1, qP 3
4
and c1 such that (M€uller et al., 1994):
WC Cð ÞP c0 I
p
Cð þ II

q
CÞ � c1; 8C 2 Symþ; ð69Þ
where Symþ denotes the set of all symmetric second-order tensors with the positive determinant.
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For the proof of the coercivity of the strain energy function (58) we set
p ¼ q ¼ 1: ð70Þ
We also assume that
cr P 0; r ¼ 1; 2; . . . ; s ð71Þ
and for each principal material direction iði ¼ 1; 2; . . . ; nÞ not all weight factors wðrÞ
i ðr ¼ 1; 2; . . . ; sÞ vanish.

Hence,
9ri : wðriÞ
i 6¼ 0; 8i ¼ 1; 2; . . . ; n: ð72Þ
Thus, in view of the restrictions (51), (53) and (71) and under consideration of (58) we can write
W P
1

4

Xn
i

lri

ari

wðriÞ
i Ii


 �ari þ 1

4

Xn
i

lri

bri

wðriÞ
i Ji


 �bri � 1

4

Xs
r

lr a�1
r

�
þ b�1

r þ c�1r

�
: ð73Þ
Let
wa ¼
1

4
min

i¼1;2;...;n

lri

ari

wðriÞ
i


 �ari
� �

: ð74Þ
Then, one can write for the first sum in (73)
1

4

Xn
i

lri

ari

wðriÞ
i Ii


 �ari
Pwa

Xn
i

I
ari
i : ð75Þ
Recall, that Ii > 0 ði ¼ 1; 2; . . . ; nÞ in view of (51) while ari P 1 ði ¼ 1; 2; . . . ; nÞ according to (59).

Further, let
Ii < 1; i ¼ 1; 2; . . . ; k; Ii P 1; i ¼ k þ 1; k þ 2; . . . ; n ð76Þ

for some kð06 k6 nÞ. Then, we obtain
wa

Xk
i

I
ari
i > 0 > wa

Xk
i

Ii

 
� k

!
; wa

Xn
i¼kþ1

I
ari
i Pwa

Xn
i¼kþ1

Ii: ð77Þ
Combining these results yields under consideration of (15), (16), (49) and (50)
wa

Xn
i¼1

I
ari
i Pwa

Xn
i

Ii

 
� k

!
Pwa

Xn
i

Ii

 
� n

!
Pwa

IC

2

�
� n
�
: ð78Þ
Thus, in view of (75)
1

4

Xn
i

lri

ari

wðriÞ
i Ii


 �ari
Pwa

IC

2

�
� n
�
: ð79Þ
For the second sum in (73) we obtain by using a similar procedure
1

4

Xn
i

lri

bri

wðriÞ
i Ji


 �bri Pwb
IIC

2

�
� n
�
; ð80Þ
where
wb ¼ 1

4
min

i¼1;2;...;n

lri

bri

wðriÞ
i


 �bri
� �

: ð81Þ
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Under consideration of (73) and with the aid of the abbreviation w ¼ 1
2
min wa;wb

� �
this finally leads to the

following inequality
W Pw ICð þ IICÞ � wa

�
þ wb

�
n� 1

4

Xs
r

lr a�1
r

�
þ b�1

r þ c�1r

�
; ð82Þ
which immediately implies (69) and (70), where c1 ¼ wa þ wb

� �
nþ 1

4

Ps
r lr a�1

r þ b�1
r þ c�1r

� �
and c0 ¼ w.
9. Special case: incompressible materials

For incompressible materials characterized by the condition
IIIC ¼ 1 ð83Þ

the strain energy function (58) can be given by
W ¼ 1

4

Xs
r

lr
1

ar

~Iar
r


�
� 1
�
þ 1

br

~Kbr
r



� 1
��

; ð84Þ
where
eKr ¼ tr C�1eLr


 �
: ð85Þ
The representation (84) is not, however, unique. Indeed, let us consider the functions of the form (see e.g.

Casey, 1995)
w Cð Þ ¼ W þ 1 Cð Þc Cð Þ; ð86Þ

where 1 is an arbitrary continuously differentiable function of the right Cauchy–Green tensor C. For

incompressible materials the constraint function can further be given by
c Cð Þ ¼ III
1=3
C � 1: ð87Þ
Thus, for all 1ðCÞ the strain energy function w (86) coincides with the original one W (84) within the

constraint manifold defined by the incompressibility condition (83).

Now, replacing W by w (86) in (11) and (14) we obtain under consideration of (83) and (87)
S ¼ 2
ow
oC

þ q
oc
oC

¼ 1

2

Xs
r

lr
eI ar�1
r

eLr

h
� eK br�1

r C�1eLrC
�1
i
þ 1

3
qð þ 21ÞC�1; ð88Þ

C ¼ 4
o2w
oCoC

þ 2q
o2c

oCoC

¼
Xs
r

lr arð
n

� 1Þ~Iar�2
r

~Lr � ~Lr þ brð � 1Þ~Kbr�2
r C�1~LrC

�1 � C�1~LrC
�1

þ ~Kbr�1
r C�1




 C�1~LrC
�1 þ C�1~LrC

�1 
 C�1
�S�

þ 4

3

o1
oC

� C�1 þ 4

3
C�1 � o1

oC

þ 2

3
qð þ 21Þ 1

3
C�1

�
� C�1 � C�1�


 C�1�S�: ð89Þ
It is seen that due to arbitrariness of q the value of the function 1 influences neither the stress (88) nor the
tangent tensor (89). It is not, however, the case for the partial derivative of this function with respect to C
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appearing in the tangent tensor (89). Since the terms with o1=oC result in no additional stress power, this

derivative cannot generally be determined unless an additional assumption concerning the zero-energy

eigenform of the tangent moduli is met. Thus, these terms only indicate the ambiguity of the tangent tensor

of a constrained material. However, for a juxtaposition of the tangent tensors (39) and (89) a unique form
of the last one is required. Indeed, this juxtaposition is necessary to express the elastic constants (33) in

terms of the material parameters lr, ar, br ðr ¼ 1; 2; . . . ; sÞ describing the strain energy function (84). Since

the elastic constants (33) have been derived under the reasonable assumption that the zero-energy eigen-

form of the tangent tensor is purely volumetric (see Itskov and Aksel, 2002) we set
C : C ¼ 0: ð90Þ
After some algebra this leads to the following expression
o1
oC

¼ 1

6
C :

o2W
oCoC

: C

� �
C�1 � o2W

oCoC
: C: ð91Þ
It is seen that ignoring the function 1ðCÞ in (86) and setting thus o1=oC ¼ 0 in (89) would lead to the

violation of the assumption (90) necessary for the comparison of the tangent tensors (39) and (89).

In view of (62)2 and under consideration of (88) qþ 21 ¼ 0 in the stress-free natural state. Thus, we

obtain
CjC¼I ¼
Xs
r

lr arð



þ br � 2Þ~Lr � eLr þ I




 ~Lr þ eLr 
 I
�S

þ 1

3
arð þ brÞ

1

3
I

�
� I� ~Lr � I� I� eLr

��
:

ð92Þ
Comparing this tensor with (39) yields
aij ¼
Xs
r

lr arð
�

þ br � 2Þw rð Þ
i w rð Þ

j þ 1

3
arð þ brÞ

1

3

�
� w rð Þ

i � w rð Þ
j

�
þ 2dijw

rð Þ
i

�
; i; j ¼ 1; 2; 3;

2Gij ¼
Xs
r

lr w rð Þ
i



þ w rð Þ

j

�
; i 6¼ j; i; j ¼ 1; 2; 3;

ð93Þ
where aij ði; j ¼ 1; 2; 3Þ are given by (33).

Of particular interest for the following comparison with experimental data is the special case where

the principal material directions and the principal axes of the right Cauchy–Green tensor coincide. In this

case,
C ¼
X3
i

k2i l i 
 l i ð94Þ
where kiði ¼ 1; 2; 3Þ denote principal stretches. Thus, the strain energy function (84) takes the form
W ¼ 1

4

Xs
r

lr
1

ar
w rð Þ
1 k21


h

þ w rð Þ

2 k22 þ w rð Þ
3 k23

�ar
� 1
i
þ 1

br
w rð Þ
1 k�2

1


�
þ w rð Þ

2 k�2
2 þ w rð Þ

3 k�2
3

�br
� 1

��
; ð95Þ
where the principal stretches are connected by the incompressibility condition (83)
k1k2k3 ¼ 1: ð96Þ
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For the Cauchy stresses we further obtain
Fig. 1.

Piola–
rii ¼ ki
oW
oki

þ p

¼ 1

2
k2i
Xs
r

lrw
rð Þ
i w rð Þ

1 k21



þ w rð Þ

2 k22 þ w rð Þ
3 k23

�ar�1
� 1

2
k�2
i

Xs
r

lrw
rð Þ
i w rð Þ

1 k�2
1



þ w rð Þ

2 k�2
2 þ w rð Þ

3 k�2
3

�br�1
þ p;

i ¼ 1; 2; 3; ð97Þ
where p represents the hydrostatic pressure.
10. Numerical example: parameter identification

In this section we focus on the numerical identification of the material parameters included in our hy-

perelastic model. To this end, recently published experimental data by Diani et al. (2003) on calendered

rubber sheets appear to be very suitable. In these experiments an anisotropy and in particular transverse

isotropy with respect to the calendering direction has been observed. The anisotropy becomes especially

apparent in samples made of rubber filled with silica particles. In this case, the difference between stresses by

uniaxial tension in calendering and transverse directions can reach 45% (see Fig. 1).

In the case of the transversely isotropic material symmetry ðn ¼ 2Þ all directions orthogonal to the

principal one are equivalent. Hence, we can set according to (57)
w rð Þ
2 ¼ w rð Þ

3 ¼ 1

2
1



� w rð Þ
1

�
; r ¼ 1; 2; . . . ; s; ð98Þ
where the principal material direction is denoted by index ‘‘1’’.

First, we consider the uniaxial loading in the calendering direction. In this case, one can set in view of the

incompressibility condition (96): k1 ¼ k, k2 ¼ k3 ¼ k�1=2. For the so-called nominal stresses measured in the

experiment
ti ¼
rii

ki
¼ oW

oki
þ pk�1

i ; i ¼ 1; 2; 3 ð99Þ
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Experimental results by Diani et al. (2003) on uniaxial tension of calendered rubber filled with silica particles: nominal (1st

Kirchhoff) stresses versus principal stretch.
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we thus obtain under consideration of (97) and (98)
t1 kð Þ ¼ 1

4

Xs
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lr 2w rð Þ
1 k

h

� 1



� w rð Þ
1

�
k�2
i
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1 k2
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þ 1
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1

�i
w rð Þ
1 k�2
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þ 1



� w rð Þ
1

�
k
ibr�1

�
; t2 ¼ t3 ¼ 0: ð100Þ
Further, by the uniaxial loading in the transverse direction k3 ¼ k�1
1 k�1

2 . Thus, the nominal stresses take

the form
t1 k1; k2ð Þ ¼ 1
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Xs
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t2 k1; k2ð Þ ¼ 1
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2

2
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)
;

t3 ¼ 0: ð101Þ
Since in this loading case the calendering direction is stress-free
t1 k1; k2ð Þ ¼ 0: ð102Þ
Under consideration of the expression for t1 (101)1 the above condition delivers k1 as an implicit function of
k2.

Thus, in the case of uniaxial loading along the calendering and transverse directions our constitutive

model can be represented by the stress–stretch relations (100) and (101), respectively. To fit these relations

to the experimental data we have used the least-squares method with the following objective function
S ¼
Xl
i¼1


t1
h

� t1 
k ið Þ

 �i2

þ
Xm
i¼1


t2
h

� t2 k ið Þ
1 ; 
k ið Þ

2


 �i2
þ
Xm
i¼1

t1 k ið Þ
1 ; 
k ið Þ

2


 �h i2
; ð103Þ
where the overbar indicates an experimental value. Herein, the first and second sums take into account

errors in the approximation of the experimental data for stresses in the calendering and transverse direc-

tions, respectively, while the third sum considers the inaccuracy in the fulfillment of the condition (102). The

number of data points used for the approximation of the experimental curves for the calendering and

transverse directions is denoted by l and m, respectively.
The objective function (103) has been minimized with respect to the material constants lr, ar; br and

wðrÞ
1 ðr ¼ 1; 2; . . . ; sÞ and the principal stretches kðiÞ

1 ði ¼ 1; . . . ;mÞ. The power series in the strain energy
function (84) has been truncated at the third term ðs ¼ 3Þ such that the total number of unknown material

constants was 12.
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Fig. 2. Experimental data (Diani et al., 2003) on the uniaxial tension of calendered rubber versus simulation by the hyperelastic model

(84) with the material constants (104).
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The minimization of the objective function has been carried out with the aid of a Newton–Raphson type

algorithm. The results of the fitting are illustrated in Fig. 2. A very good agreement with the experimental

data is observable.

The material constants are found to be
l1 ¼ 4:387 
 10�3MPa; wð1Þ
1 ¼ 1; wð1Þ

2 ¼ wð1Þ
3 ¼ 0; a1 ¼ 4:094; b1 ¼ 2:268;

l2 ¼ 4:131 
 10�4MPa; wð2Þ
1 ¼ 0; wð2Þ

2 ¼ wð2Þ
3 ¼ 0:5; a2 ¼ 7:595; b2 ¼ 8:178;

l3 ¼ 5:127MPa; wð3Þ
1 ¼ 0:396; wð3Þ

2 ¼ wð3Þ
3 ¼ 0:302; a3 ¼ 1:00; b3 ¼ 1:00:

ð104Þ
The relations (93) deliver further
a11 ¼ 2:507MPa; a12 ¼ a13 ¼ �1:253MPa; a22 ¼ a33 ¼ 2:175MPa; a23 ¼ �0:922MPa;

2G12 ¼ 2G13 ¼ 3:584; 2G23 ¼ 3:097MPa:
ð105Þ
Under consideration of (35)–(37) we finally obtain for the Young’s moduli of the calendered rubber
E1 ¼ 5:637 MPa; E2 ¼ E3 ¼ 4:859 MPa: ð106Þ
11. Conclusion

In the present paper we have proposed a class of orthotropic and transversely isotropic strain energy

functions that are polyconvex and proved to be coercive. For a boundary value problem this ensures the

existence of the global minimizer of the total elastic energy of the body. The proposed strain energy

functions are represented by a power series with an arbitrary number terms. Each of these terms satisfies a

priori the condition of the energy- and stress-free natural state such that no additional restrictions should be

imposed on the associated material coefficients. These coefficients can further be evaluated on the basis of

experimental data. For illustration, our hyperelastic model is thus matched to experimental data on cal-

endered rubber sheets revealing transverse isotropy with respect to the calendering direction. A very good
agreement with the experimental results has been achieved.
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